Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Cell Res ; 434(1): 113872, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072303

RESUMO

Autophagy is involved in the entirety of cellular survival, homeostasis and death which becomes more self-evident when its dysregulation is implicated in several pathological conditions. PTEN positively regulates autophagy and like other proteins undergo post-translational modifications. It is crucial to investigate the relationship between PTEN and autophagy as it is generally observed to be negligible in PTEN deficient cancer cells. Here, we have shown that such modifications of PTEN namely sumoylation and phosphorylation upregulates and downregulates autophagy respectively. Transfection of plasmid containing full length PTEN in PTEN-negative prostate cancer cell line PC3, induced autophagy on further starvation. When a sumoylation-deficient mutant of PTEN was transfected and cells were put under similar starvation, a decline in autophagy was observed. On the other hand, cells transfected with phosphorylation-deficient mutant of PTEN showed elevated expression of autophagy. Contrarily, transfection with phosphorylation-mimicking mutant caused reduced expression of autophagy. On further analysis, it was detected that PTEN's association with the plasma membrane was under positive and negative influence from its sumoylation and phosphorylation respectively. This association is integral as it is the foremost site for PTEN to oppose PI3K/AKT pathway and consequently upregulate autophagy. Thus, this study indicates that sumoylation and phosphorylation of PTEN can control autophagy via its cell membrane association.


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Masculino , Humanos , Fosforilação , Serina-Treonina Quinases TOR/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sumoilação , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Autofagia/genética , Membrana Celular/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Med Oncol ; 40(4): 119, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36930246

RESUMO

PTEN, dual phosphatase tumor suppressor protein, is found to be frequently mutated in various cancers. Post-translational modification of PTEN is important for its sub-cellular localization and catalytic functions. But how these modifications affect cytological damage and aneuploidy is not studied in detail. We focus on the role of phosphatase activity along with C-terminal phosphorylation of PTEN in perspective of cytological damage like micronucleus, nuclear bud, and nuclear bridge formation. Our data suggest that wild-type PTEN, but not phospho-mutant PTEN significantly reduces cytological damage in PTEN null PC3 cells. In case of phosphatase-dead PTEN, cytological damage markers are increased during 24 h recovery after DNA damage. When we use phosphorylation and phosphatase-dead dual mutant PTEN, the extent of different cytological DNA damage parameters are similar to phosphatase-dead PTEN. We also find that both of those activities are essential for maintaining chromosome numbers. PTEN null cells exhibit significantly aberrant γ-tubulin pole formation during metaphase. Interestingly, we observed that p-PTEN localized to spindle poles along with PLK1 and Aurora Kinase A. Further depletion of phosphorylation and phosphatase activity of PTEN increases the expression of p-Aurora Kinase A (T288) and p-PLK1 (T210), compared to cells expressing wild-type PTEN. Again, wild-type PTEN but not phosphorylation-dead mutant is able to physically interact with PLK1 and Aurora Kinase A. Thus, our study suggests that the phosphorylation-dependent interaction of PTEN with PLK1 and Aurora Kinase A causes dephosphorylation of those mitotic kinases and by lowering their hyperphosphorylation status, PTEN prevents aberrant chromosome segregation in metaphase.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Humanos , Aneuploidia , Aurora Quinase A/genética , Proteínas de Ciclo Celular/metabolismo , Instabilidade Genômica , Células HeLa , Mitose , Monoéster Fosfórico Hidrolases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
3.
Mutat Res ; 825: 111800, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36155262

RESUMO

PTEN is a tumor suppressor protein frequently altered in various cancers. PTEN-null cells have a characteristic of rapid proliferation with an unstable genome. Replication stress is one of the causes of the accumulation of genomic instability if not sensed by the cellular signaling. Though PTEN-null cells have shown to be impaired in replication progression and stalled fork recovery, the association between the catalytic function of PTEN regulated by posttranslational modulation and cellular response to replication stress has not been studied explicitly. To understand molecular mechanism, we find that PTEN-null cells display unrestrained replication fork progression with accumulation of damaged DNA after treatment with aphidicolin which can be rescued by ectopic expression of full-length PTEN, as evident from DNA fiber assay. Moreover, the C-terminal phosphorylation (Ser 380, Thr 382/383) of PTEN is essential for its chromatin association and sensing replication stress that, in response, induce cell cycle arrest. Further, we observed that PTEN induces HP1α expression and H3K9me3 foci formation in a C-terminal phosphorylation-dependent manner. However, phosphatase dead PTEN cannot sense replication stress though it can be associated with chromatin. Together, our results suggest that DNA replication perturbation by aphidicolin enables chromatin association of PTEN through C-terminal phosphorylation, induces heterochromatin formation by stabilizing and up-regulating H3K9me3 foci and augments CHK1 activation. Thereby, PTEN prevents DNA replication fork elongation and simultaneously causes G1-S phase cell cycle arrest to limit cell proliferation in stress conditions. Thus PTEN act as stress sensing protein during replication arrest to maintain genomic stability.


Assuntos
Cromatina , Heterocromatina , Humanos , Fosforilação , Heterocromatina/genética , Afidicolina/farmacologia , Montagem e Desmontagem da Cromatina , Instabilidade Genômica , PTEN Fosfo-Hidrolase/genética
4.
DNA Repair (Amst) ; 107: 103197, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34359000

RESUMO

Suppression of genomic instability is the key to prevent tumor development. PTEN is a unique tumor suppressor protein having both lipid and protein phosphatase activities. Interestingly though it is a cytoplasmic protein, but a significant pool of PTEN can also be localized in nucleus. The function of cytoplasmic PTEN is well defined and extensively studied in various literatures focusing mainly on the negative regulation of oncogenic PI-3Kinase-AKT pathway but functional regulation of nuclear PTEN is less defined and therefore it is a fascinating subject of research in cancer biology. Post-translation modulation of PTEN such as phosphorylation, sumorylation, acetylation and methylation also regulates its cellular localization, protein-protein association and catalytic function. Loss or mutation in PTEN is associated with the development of tumors in various tissues from the brain to prostate. Here we have summarized the role of nuclear PTEN and its epigenetic modulation in various DNA metabolic pathways, for example, DNA damage response, DNA repair, DNA replication, DNA segregation etc. Further, pathways involved in nuclear PTEN degradation are also discussed. Additionally, we also emphasize probable potential targets associated with PTEN pathway for chemotherapeutic purpose.


Assuntos
Carcinogênese , Núcleo Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...